# imarós<sub>2</sub>

**Final Conference - Malta** 

Characterisation and Impacts of LSFOs

Fanny CHEVER

18.11.25







## Characterisation and Impacts Objectives

- Screen and characterise new samples, compare with IMAROS samples
- Understand the market evolution since 2020
- Improve understanding of the properties of LSFOs, focusing on parameters affecting recovery and shoreline response
- Get information on the behaviour of LSFOs in marine and fresh waters
- Get information on behaviour and response options in Mediterranean area







## Characterisation and Impacts Tasks

- In-depth physical-chemical characterisation
- Oil weathering (5°C and 25°C, freshwater and seawater)
- Biodegradability
- Identification (CEN: European committee for standardization)
- Modelling







## Characterisation and Impacts Tasks

- In-depth physical-chemical characterisation
- Oil weathering (5°C and 25°C, freshwater and seawater)
- Biodegradability
- Identification (CEN: European committee for standardization) → RBINS
- Modelling







### Characterisation and Impacts Tasks

- In-depth physical-chemical characterisation
- Oil weathering (5°C and 25°C, freshwater and seawater)
- Biodegradability
- Identification (CEN: European committee for standardization)
- Modelling → RWS / RBINS

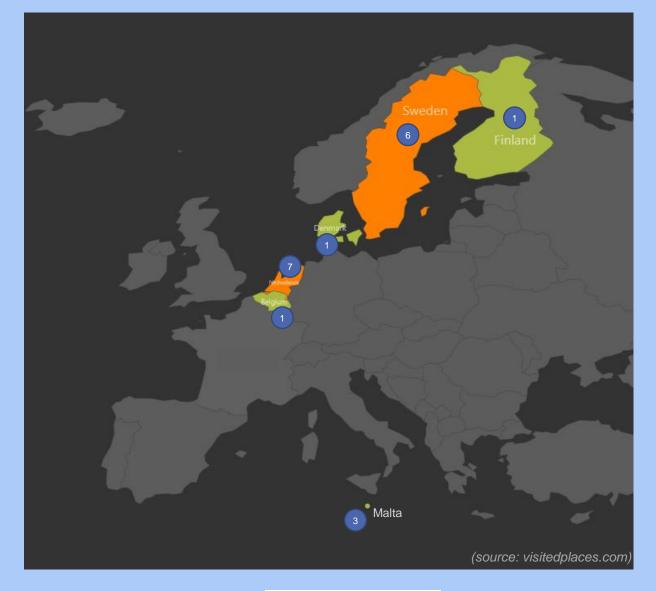






#### **Samples**

19


16 small, 3 large

☐ 6 countries (FI, SE, DK, NL, BE, MT)

5 ULSFO

14 VLSFO

☐ Refineries or bunker companies









Visual aspect at ~20°C:

- 9 fluid
- 10 not fluid







#### Comparison VPS PortStat (2024) and IMAROS 2 samples

| VLSFO         |           | VPS PortStats (2024) | IMAROS 2 samples |           |           | VPS PortStats (2024) | IMAROS 2 samples |       |         | VPS PortStats (2024) | IMAROS 2 samples |
|---------------|-----------|----------------------|------------------|-----------|-----------|----------------------|------------------|-------|---------|----------------------|------------------|
|               | < 880     |                      |                  | ŧ         | < 20      |                      | 1                |       | -5 - 0  |                      | 3                |
| m3)           | 881 - 900 |                      |                  | (Cst)     | 20 - 50   |                      | 2                | ۵,    | 0-5     |                      | 1                |
| (g/r          | 901 - 920 |                      |                  | 50°C      | 51 - 80   |                      | 1                | nt (' | 5 - 10  |                      | 3                |
| × (           | 921 - 950 |                      | 4                |           | 81 - 180  |                      | 4                | oir   | 10 - 15 |                      | 2                |
| nsity (kg/m3) | 951 - 980 |                      | 9                | osit      | 181 - 280 |                      | 5                | n n   | 15 - 20 |                      |                  |
| Der           | 980 - 990 |                      |                  | Vsicosity | 281 - 380 |                      |                  | Ро    | 20 - 25 |                      | 1                |
|               | >991      |                      | 1                | >         | >381      |                      | 1                |       | 25 - 30 |                      | 2                |
|               |           |                      |                  |           |           |                      |                  |       | > 30    |                      | 1                |

| ULSFO           |           | VPS PortStats (2024) | IMAROS 2 samples |            |           | VPS<br>PortStats<br>(2024) | IMAROS 2 samples |         |         | VPS PortStats (2024) | IMAROS 2 samples |
|-----------------|-----------|----------------------|------------------|------------|-----------|----------------------------|------------------|---------|---------|----------------------|------------------|
|                 | < 880     |                      |                  | ÷          | < 20      |                            | 1                |         | -5 - 0  |                      |                  |
| m3)             | 881 - 900 |                      | 5                | <u>S</u>   | 20 - 50   |                            | 2                | (°C)    | 0-5     |                      |                  |
| 1/89            | 901 - 920 |                      |                  | 50°C (Cst) | 51 - 80   |                            | 2                | 1t ('   | 5 - 10  |                      |                  |
| Density (kg/m3) | 921 - 950 |                      |                  |            | 81 - 180  |                            |                  | Point ( | 10 - 15 |                      |                  |
| nsit            | 951 - 980 |                      |                  | osit       | 181 - 280 |                            |                  | _       | 15 - 20 |                      | 1                |
| De              | 980 - 990 |                      |                  | Vsicosity  | 281 - 380 |                            |                  | Poul    | 20 - 25 |                      |                  |
|                 | > 991     |                      |                  | >          | >381      |                            |                  |         | 25 - 30 |                      |                  |
|                 |           |                      |                  |            |           |                            |                  |         | > 30    |                      | 4                |

o IMAROS 2 samples mainly representative of the market in 2024

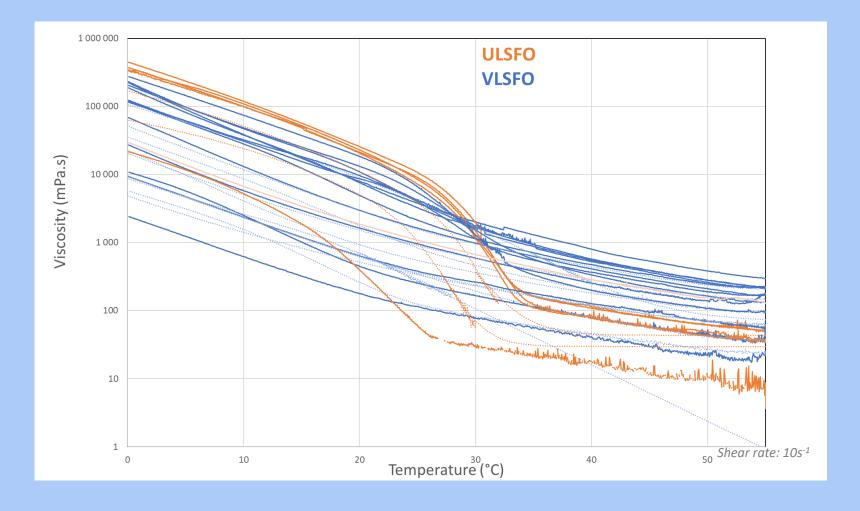








#### Part I


#### Screening of the fresh oils

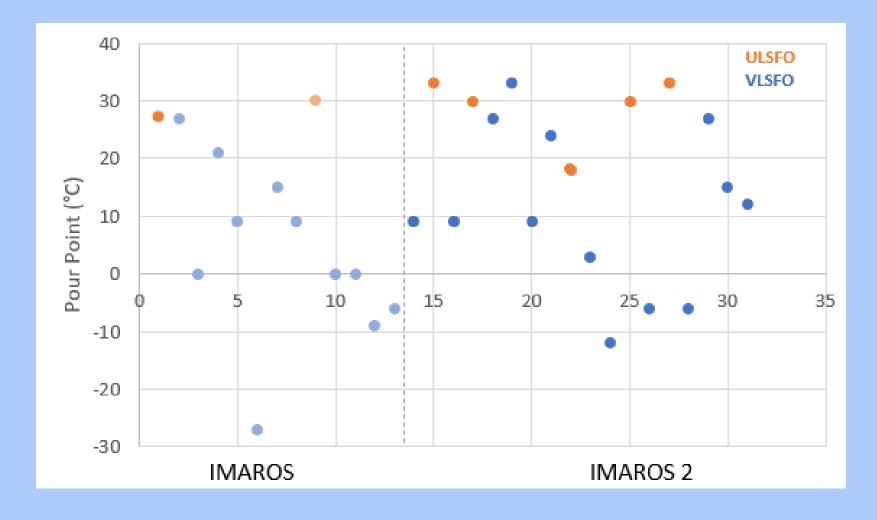






#### Viscosity










#### Pour point

#### IMAROS 2 samples : -12°C to +33°C





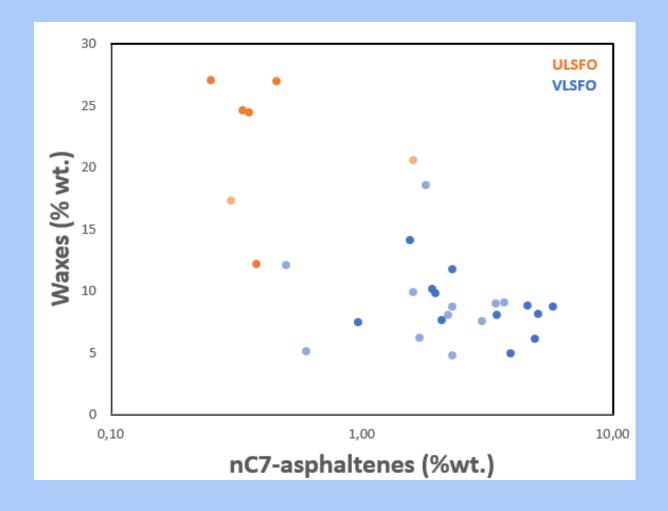




#### Pour point

|       | Pour<br>point<br>CoA (°C) | Pour point<br>Cedre (°C)<br>ISO 3016 (ASTM 97) | Init. measure<br>Sintef (°C)<br>(ASTM D97) | Min. pour<br>point (°C)*<br>(ASTM D5853) | Max. pour point (°C)* (ASTM D5853) | Max. pour point (next day)* |
|-------|---------------------------|------------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------|-----------------------------|
| IM-27 | 12                        | 9                                              | 21                                         | 9                                        | 24                                 | 21                          |
| IM-28 | 27                        | 24                                             | 30                                         | 21                                       | 30                                 | 27                          |
| IM-29 | 27                        | 18                                             | 21                                         | 15                                       | 21                                 | 24                          |

\* source: SINTEF/Intertek

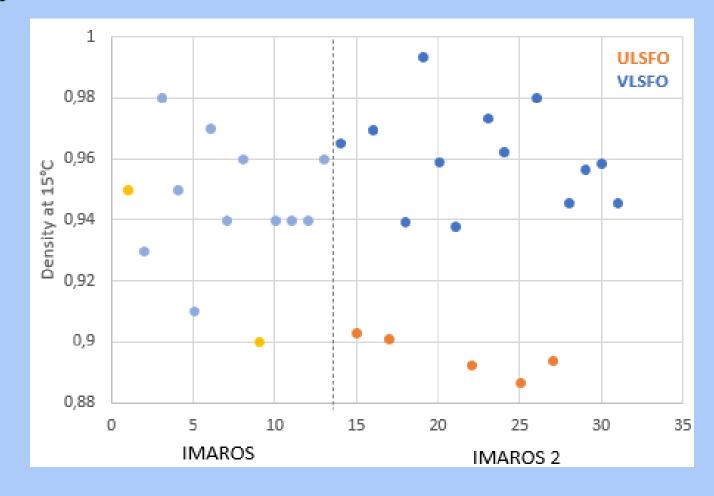

ASTM D-5853 Standard Test Method for Pour Point of Crude Oils. The maximum and minimum pour point temperatures provide a temperature window where a crude oil, depending on its thermal history, might appear in the liquid as well as the solid state. The test method can be used to supplement other measurements of cold flow behaviour. It is especially useful for the screening of the effect of wax interaction modifiers on the flow behaviour of crude oils.







#### Waxes & Asphaltenes

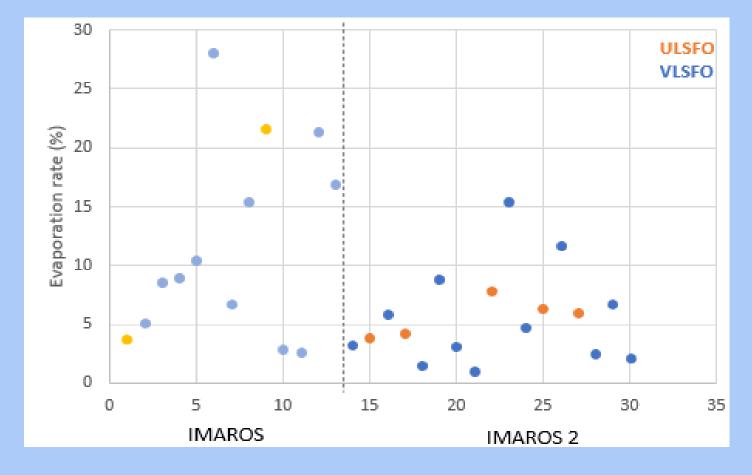









#### Density

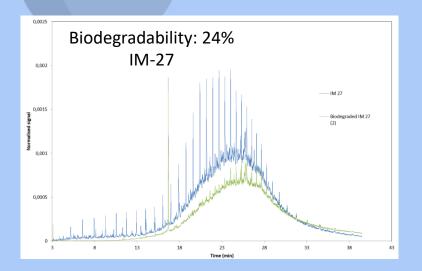


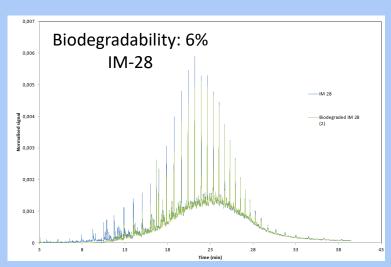






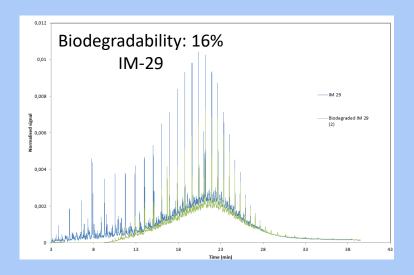

#### Evaporation









#### Biodegradability







protocol adapted from De Mello et al. (2007)



Low biodegradability rates





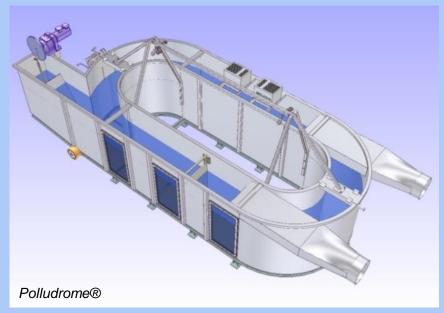




#### **Part II**

#### Weathering of the oils

Focus on the 3 Large Samples (IM-27, IM-28 and IM-29)








#### Weathering

|              | Visc. 50°C<br>CoA from suppliers<br>(mm²/s) | Pour point<br>Cedre (°C) | Density<br>15°C | Visc. 5°C<br>(10s <sup>-1</sup> , mPa.s) | Visc. 25°C<br>(10s <sup>-1</sup> , mPa.s) |   | Asphaltenes<br>(%) | Waxes<br>(%) |
|--------------|---------------------------------------------|--------------------------|-----------------|------------------------------------------|-------------------------------------------|---|--------------------|--------------|
| IM27 (VLSFO) | 322                                         | 9                        | 0.96            | 165 205                                  | 7 592                                     | 3 | 2.1                | 7.6          |
| IM28 (VLSFO) | 124                                         | 24                       | 0.94            | 249 952                                  | 21 221                                    | 1 | 1.5                | 14.1         |
| IM29 (ULSFO) | 39                                          | 18                       | 0.89            | 42 782                                   | 331                                       | 8 | 0.4                | 13.3         |



For each oil, 3 conditions tested

- 5°C in seawater
- 5°C in freshwater
- o 25°C in seawater







#### Weathering – Global observations

At 5°C:

- 1st part:
  - Possible fragmentation (IM-28 and IM-29)
  - IM-27 and IM-28: oils stick to the walls, no floating oil for a time, can go up to 96h, need to be manually removed from the walls
  - IM-29: one big slick moving but that can hang the walls
- 2<sup>nd</sup> part:
  - IM-27: with time and emulsification, a slick reassembles and float again
  - IM-28: Stays stuck / no oil free
  - IM-29: The oil freely floats

Real environment: Slicks can either disseminate as small bullets or become even more compact, with slower emulsification process

At 25°C: • IM-27, IM-28 and IM-29: Much more traditionnal behaviour

Effect of salinity/Freshwater: no major changes. Whatever the salinity, the oil will go in subsurface in case of agtation/turbulences









+53h



|                   | Fresh oil | Weathered oil |
|-------------------|-----------|---------------|
| Viscosity (mPa.s) | 165 000   | 120 000       |
| Density           | 0.96      | 0.99          |
| Water content (%) | -         | ~40-60        |

Compact slicks that do not spread







+168h



|                   | Fresh oil | Weathered oil |
|-------------------|-----------|---------------|
| Viscosity (mPa.s) | 7 600     | 37 000        |
| Density           | 0.95      | 0.98          |
| Water content (%) | -         | 80            |

Much more fluid slick that spreads and emulsifies with time













|                   | Fresh oil | Weathered oil |
|-------------------|-----------|---------------|
| Viscosity (mPa.s) | 250 000   | 380 000       |
| Density           | 0.94      | 0.97          |
| Water content (%) | -         | 40            |

Solid / semi-solid slicks with granular aspect
May disseminate
Bullets can slowly emulsify





+2h

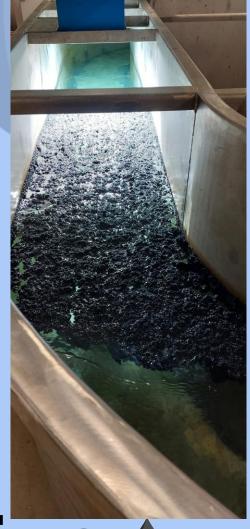


+168h



|                   | Fresh oil | Weathered oil |
|-------------------|-----------|---------------|
| Viscosity (mPa.s) | 21 000    | 64 000        |
| Density           | 0.930     | 0.998         |
| Water content (%) | -         | 85            |

Solid / semi-solid slicks with granular aspect
May break easily
Lumps can emulsify with time








☐ IM-29, 5°C, SW

+1h







|                   | Fresh oil | Weathered oil |
|-------------------|-----------|---------------|
| Viscosity (mPa.s) | 43 000    | 65 000        |
| Density           | 0.90      | 0.88          |
| Water content (%) | -         | 50            |

Highly granular fragmented slick
May disseminate
Bullets can slowly emulsify







+168h



|                   | Fresh oil | Weathered oil |
|-------------------|-----------|---------------|
| Viscosity (mPa.s) | 331       | 8 400         |
| Density           | 0.89      | 1.00          |
| Water content (%) | -         | 90            |

Much more fluid slick that spreads and emulsifies with time





#### Chemical dispersion – Fresh oils

**IM-27** 



IFP test – 5°C

IFP test – 25°C

|      | Visc. 5°C<br>(10s <sup>-1</sup> , mPa.s) | Visc. 25°C<br>(10s <sup>-1</sup> , mPa.s) |
|------|------------------------------------------|-------------------------------------------|
| IM27 | 165 205                                  | 7 592                                     |
| IM28 | 249 952                                  | 21 221                                    |
| IM29 | 42 782                                   | 331                                       |

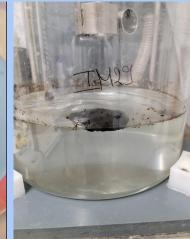




IM-28








IFP test – 25°C

#### IM-29



IFP test – 5°C



MNS test – 25°C



#### Main conclusions & Elements for OSR techniques

- No flammability issues
- Persistent products (low evaporation)
- Floating oils
- Possible dissemination of the slicks in small bullets
- Emulsification at 25°C, limited at 5°C
- Chemical dispersion seems limited to some fresh oils (IMAROS samples)
- Based on viscosity measurements, recovery recommended even if challenged for some oils due to high pour points
- Visco-elastic behaviour cannot be reproduced during those trials







## Thank you for your attention





