

IMAROS Closing Event, Malta, June 1, 2022

Physical-chemical properties of low sulphur fuel oils and chemical characteristics and acute toxicity of their WAFs

Liv-Guri Faksness, Kristin R. Sørheim, Per S. Daling SINTEF Ocean, Norway

- Studied oils
- Air measurements during skimmer testing
- Preparation of WAFs (water accommodated fraction)
- Chemical and toxicological characteristics of the WAFs
- Higher PAH contents in low sulphur fuels than conventional fuels?
- Summary and conclusions

Studied oils and their physical properties

IM no.	Oil description	Viscosity at	: 10 °C (cP)	Density	Pour point
		10 s ⁻¹	100 s ⁻¹	15 °C (calculated)	(°C)
IM-5	VLSFO, Wakashio	1199	582	0.908	9
IM-14	VLSFO	13256	5183	0.929	27 (±3)
IM-15	VLSFO	9195	6729	0.946	0 (±3)
IM-16*	ULSFO	44211	9463	0.909	33 (±3)

* IM-16: Only oil analyses, not WAF and toxicity

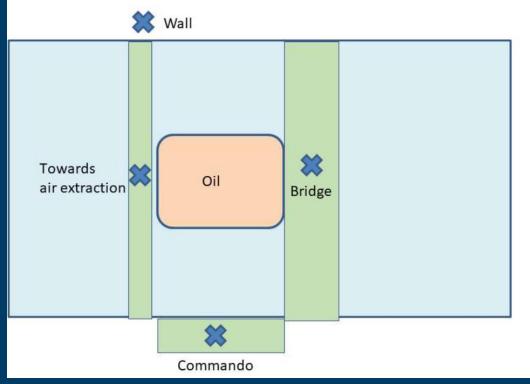
Objectives

- Measure the air concentration of VOC after oil release and make an estimate of a "worst-case" situation
- Measure personal exposure to VOC among persons operating the oil spill tests and compare these levels with the Norwegian Occupational Exposure Limits (OELs)
- Evaluate the toxic potential of the oils based upon their chemical composition

Measurement performed by the Research Group for Occupational Medicine at the University in Bergen, Norway:

Reported in Bråtveit et al. (2022): Air measurements of hydrocarbons emitted from oils during testing of skimmers at National Centre for Testing of oil spill response equipment

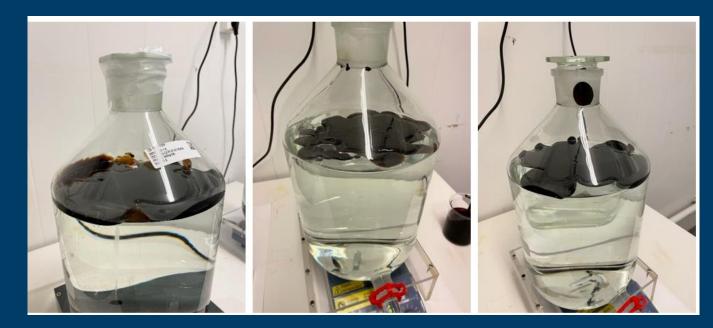
SINTEF


Air measurements during skimmer testing

Methods

- Concentration of VOCs in air
 - PID (photo ionization detector)
 o Personal samples on 2-4 operator
 - TD tub as (the area of all as a resting tub.
 - TD-tubes (thermal desorption tubes)
 - Four positions in the hall

Conclusions


 The measured air concentrations of VOCs and PAHs were low compared to the Norwegian Occupational Exposure Limits

Air measurement positions (blue crosses), approx. 1.5 m above oil level

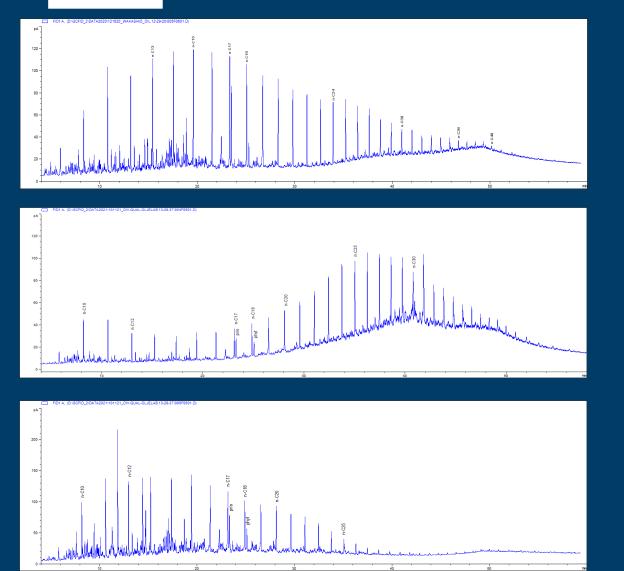
SINTEF Preparation of Water Accommodated Fraction (WAF) CROSERF methodology

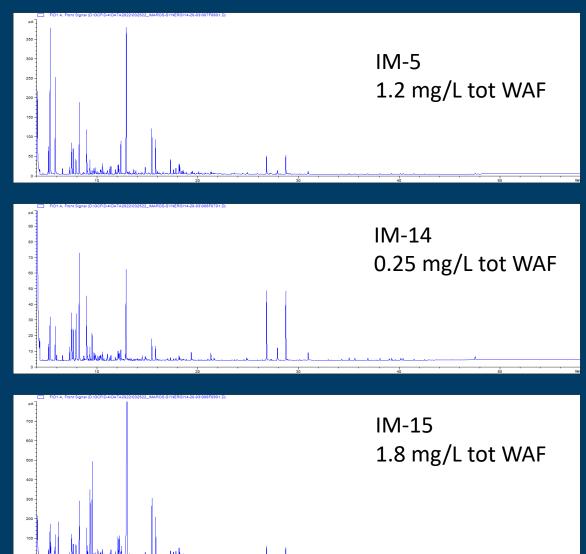
- A water solution of *dissolved* oil compounds, prepared in lab-system with calm mixing of oil and water
- Headspace: 20-25 %
- Prepared with an oil to water ratio of 1:40 (25 g/L) at 2°C
- Exposure time: 72 hours
- Chemical characterization and toxicity studies

WAFs of IM-5, IM-14 and IM-15

Chemistry and toxicity of the WAFs

- Detailed chemical characterization of the oils and the WAFs:
 - Volatile components (35 comp, including BTEX)
 - Semi volatile components (55 components, including PAHs and phenols)
 - Total petroleum hydrocarbons (C₁₀-C₃₆)
- Acute toxicity tests of the WAFs (performed in closed vessels to avoid loss of volatiles):
 - Marine copepod *Acartia tonsa*
 - Mortality monitored after a 48 hours test period at 20 °C
 - Reported as LC-values (Survival of copepods)
 - Marine copepod *Calanus finmarchicus*
 - Mortality monitored after a 96 hours test period at 10 °C
 - Reported as LC-values (Survival of copepods)



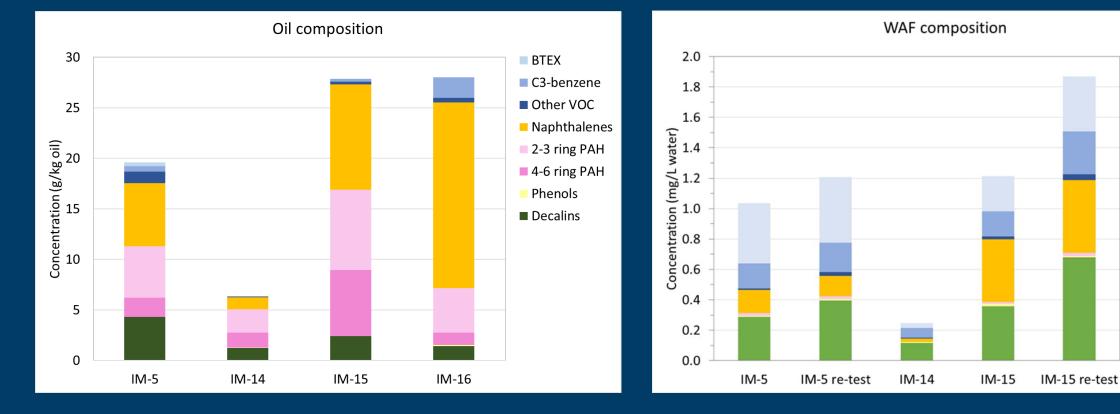

Acartia tonsa (Photo: D. Altin)

GC chromatograms of the oils and their WAFs

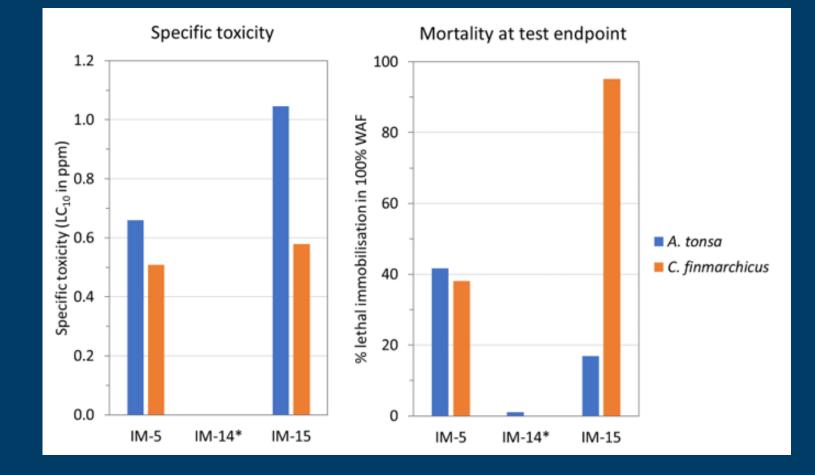
Chemical composition of the oils and the WAFs

BTEX

C3-benzenes

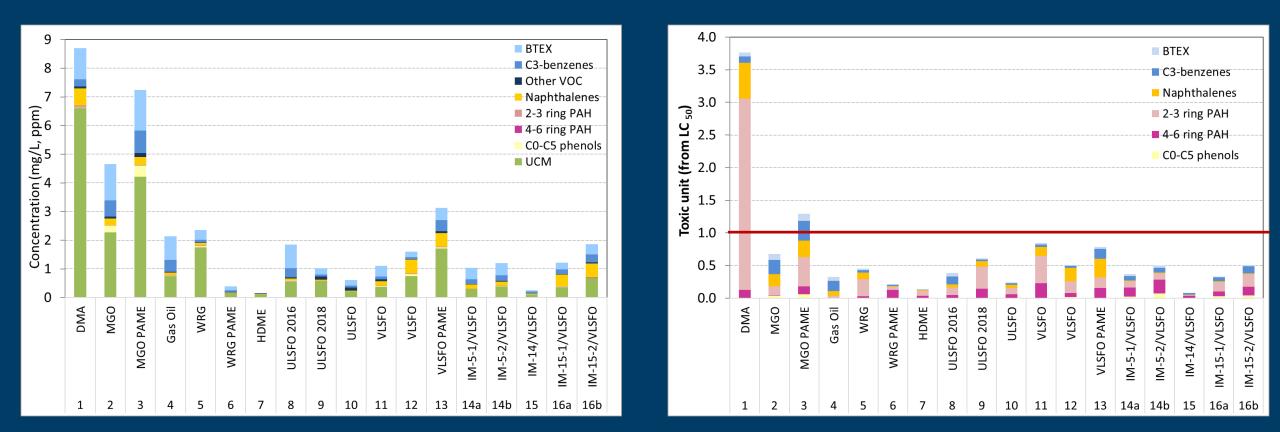

Naphthalenes

2-3 ring PAH


4-6 ring PAH
 C0-C5 phenols

Decalins
 UCM

Other VOC



- Toxic level too low to calculate LC₅₀s: Less than 50% mortality in all system exept one
- No toxic effect observed in tests on IM-14

LC₁₀ is defined as the concentration causing a negative effect on 10% of the test organisms

Chemical composition and Toxic Unit of WAFs of low sulphur oils

Use log K_{OW} to estimate the LC50 for each component using the linear regression model log LC50 = $m \log K_{OW} + b$ (*McCarty et al, 1992 and 1993*)

TU > 1 implies that the WAF is expected to cause 50% mortality in the test organisms

Higher PAH contents in low sulphur fuels than conventional fuels?

- Have been reported that some of the "new" LSFOs contain more than 90% PAHs (IMO (2020); Behrends (2021)
- Not described how these values were calculated, but reported as > 90% PAHs in LSFO:
 - 90% of the analysed components?
 - 90% of the total oil content (0.9 kg PAH in 1 kg oil)?
- We have evaluated and compared the chemical composition of 53 fuels oils, including 13 IM-oils from Cedre

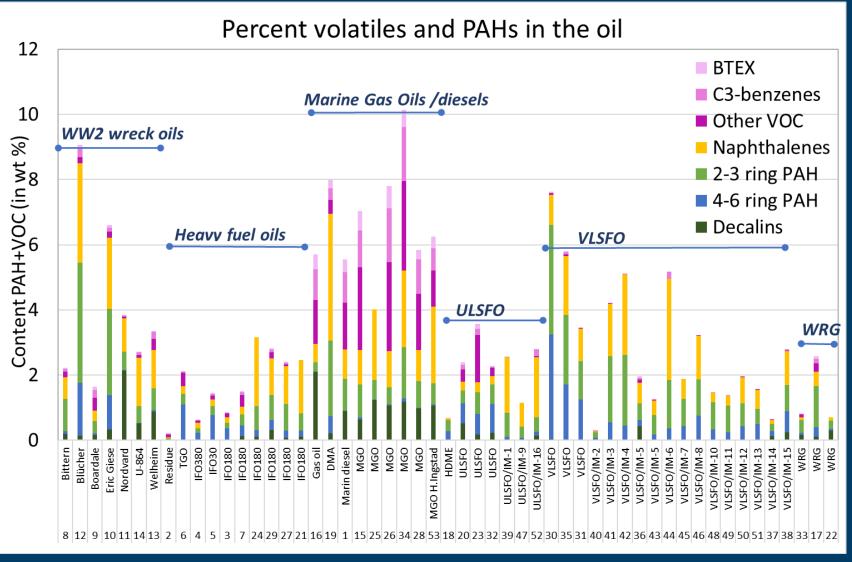

Table from IMO and Behrends:

Table 4: Chemical groups of the major compounds of the VLSFOs after GC x GC- HRTOFMS analysis. Grey shaded lines represent the aromatic compounds								
Type of hydrocarbon	Chemical groups including the alkylated compounds	Unit	VLSFO (73.7%)	VLSFO (83.1%)	VLSFO (97.3%)			
paraffinic	n-Alkanes	%	4.37	6.70	1.67			
	iso-Alkanes	%	9.45	5.69	0.59			
	Naphthenes/Olefines	%	3.41	2.91	0.00			
	Dinaphthenes/Olefines	%	4.91	0.75	0.00			
aromatic	Alkylbenzenes	%	6.64	6.25	3.83			
	Naphthobenzenes	%	8.30	7.94	6.71			
	Indenes	%	7.34	9.05	10.47			
polycyclic	Naphthalenes	%	25.51	40.81	54.64			
aromatic	Biph./Diph.meth./Acenaphthenes	%	10.82	8.67	9.62			
	Fluorenes	%	6.14	4.71	5.11			
	Phenanthrenes	%	6.85	5.08	6.18			
	Pyrenes/Fluoranthenes	%	0.91	0.31	0.47			

IMO PPR 8/5/1: Reduction of the impact on the Arctic of emission of Black Carbon from international shipping

Comparison of 53 fuel oils (approx 90 comp)

7 of 53 oils > 5% SVOC

•

- 7.5% in VLSFO (Multipartner)
- 6.7% in DMA (Rotterdam)
- 6.3% in MGO (H.Ingstad)
- 5.6% in VLSFO PAME
- 5.1% in VLSFO (IM-4)
- MGO PAME has highest content of total VOC+SVOC (10%)
- 11 fuels < 1% SVOC
- Content of SVOC varies:
 - From 0.5 to 7.5% for VLSFO
 - From 1.2 to 2.8% for ULSFO
 - From 0.7 to 3% in traditional heavy bunker oils

- The measured exposure of VOCs and PAHs to operating personnel during skimmer testing were low compared with the Norwegian Occupational Exposure Limits
- The WAFs were dominated of volatiles and naphthalenes, which are the most water soluble component and the total WAF concentrations were low in IM -14 (0.25 mg/L), and in the same range as other LSFOs in IM-5 and IM-15 (between 1 and 1.9 mg).
- In general, the toxicity in the WAF systems were low, as the observed lethal immobilisation was less than 50% in 5 of 6 tests, and calculated TUs were less than 1 in all systems.
- There are no significant differences in relative content of the component groups between the new LSFOs compared to the more traditional heavy fuel oils.
 - There was a span in PAH content from 0.5% to 7.5% in the VLSFOs and from 1.2% to 2.8% in the ULSFOs. In the traditional IFO180s, the PAH content varied from 0.7 to 3%.
- There are no indications that these tested LSFOs contain non-analysed components that would enhance the toxic potential to the marine environment

- The Norwegian Coastal Administration
- Laboratory personnel at SINTEF
 Ocean, Climate and Environment
- Dag Altin (Biotrix)

