

Project background

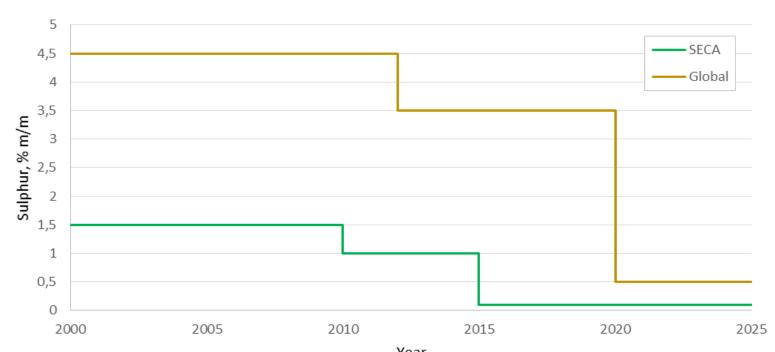
Silje Berger Project manager Norwegian Coastal Administration

SECA – Sulphur Emission Control Areas

On 1st January 2015, new requirements on the sulphur content of ships' fuels took effect, laid down in Annex VI of the IMO MARPOL Convention.

Within the **Sulphur Emission Control Areas** (SECAs) ships must use fuels with a maximum sulphur content of 0.10% – or adopt alternative solutions resulting in an

equivalent effect.



MARPOL Annex VI

Limits on the sulphur content of fuel to be used inside and outside SOx Emission Control Areas (SECA). Alternatively, approved abatement methods must be applied.

Compliance options

Figure: EXONMODII

New generation of fuel oils

- New fuel types on the market designed to meet the new regulations
- Lack of knowledge how spills of these fuels behave:
 - chemical and physical properties
 - toxicity
 - best methods for response

New generation fuel oils

- Ultra low sulphur fuel oils ULSFO
- Very low sulphur fuel oils VLSFO
- ECA fuels
- Hybrid fuel oils
- ...

Classification ISO 8217 Fuel Standards (2017)

Requirements for Marine Distillate Fuels

Requirements for Marine Residual Fuels

Charact	Unit	Limit	Category ISO-F-								
Onarac	Oilit	Liiiii	DMX	DMA	DFA	DMZ	DFZ	DMB	DFB		
Kinematic viscosity at 40 °C		mm²/s a	Max	5,500	6,00			000		,00	
Amortidae viologicy at 40 C		,-	Min	1,400	2,00	00	3,000		2,000		
Density at 15 °C		kg/m³	Max	_	890,0		890,0		900,0		
Cetane index		-	Min	45	40		40		35		
Sulfur ^b		mass %	Max	1,00	1,00		1,00		1,50		
Flash point		°C	Min	43,0	60,0		60,0		60,0		
Hydrogen sulfide		mg/kg	Max	2,00	2,00		2,00		2,00		
Acid number		mg KOH/g	Max	0,5	0,5		0,5		0,5		
Total sediment by hot filtration		mass %	Max	_	-		-		0,10 °		
Oxidation stability		g/m³	Max	25	25		25		2	5 d	
Fatty acid methyl ester (FAME) *		volume %	Max	_	-	7,0	-	7,0	-	7,0	
Carbon residue – Micro method on the 10 % volume distillation residue		mass %	Max	0,30	0,30 0,		30	-			
Carbon residue - Micr	o method	mass %	Max	_			-	0,30			
Cloud point f	winter	°C	Max	-16	report report		ort	-			
Cloud point	summer	°C	Max	-16	-		-				
Cold filter plugging point ^f	winter	°C	Max	- re		report		report		_	
	summer	°C	Max	_	-		-				_
Pour point (upper) f	winter	°C	Max	6		-6 -6		6		0	
	summer	°C	Max	_	0		0			6	
Appearance					Clear and Bright ⁹						

l	Characteristic								ategory ISO-F-								
II.			Unit	Limit	RMA	RMB	RMD	RME			RMG			RMK			
					10	30	80	180	180	88	0	500	700	380	500	700	
	Kinematic viscosity at 50 °C		mm²/s ^a	Max	10,00	30,00	80,00	180,0	180,0	38	0,0 500,0 700,0		380,0	500,0	700,0		
Density at 15 °C		kg/m³	Max	920,0	960,0	975,0	991,0			991,0 1010,0							
	CCAI		-	Max	850	860	860	860			870 870						
Sulfur ^b		mass %	Max	Statutory requirements													
	Flash point		°C	Min	60,0	60,0	60,0	60,0			60,0	0			60,0		
	Hydrogen sulfide		mg/kg	Max	2,00	2,00	2,00	2,00			2,00 2,00						
	Acid number ^c		mg KOH/g	Max	2,5	2,5	2,5	2,5			2,5		2,5				
	Total sediment – Aged		mass %	Max	0,10	0,10	0,10	0,10			0,10 0,10		0,10				
	Carbon residue – Micro method		mass %	Max	2,50	10,00	14,00	15,00			18,00 20		20,00				
П		winter	°C	Max	0	0	30	30			30				30		
	Pour point (upper) d summer		°C	Max	6	6	30	30			30			30			
	Water		volume %	Max	0,30	0,50	0,50	0,50			0,50 0,5		0,50				
	Ash		mass %	Max	0,040	0,070	0,070	0,070			0,10	00			0,150		
	Vanadium		mg/kg	Max	50	150	150	150			350)			450		
	Sodium		mg/kg	Max	50	100	100	50			100 1		100				
	Aluminium plus silicon		mg/kg	Max	25	40	40	50			60 60						
	Used lubricating oil (UL) - Calcium and zinc; or Calcium and phosphore	mg/kg	-				Ca	Calcium :	0	г	inc > 15 phorus >	15					

ULSDO / ADO (< 10 ppm) (0.001%S) MGO = DMA MDO = DMB

"New generation LSFOs:

ULSFO: < 0.1 % S

• VLSFO: < 0.5 % S

Wide spectre. Do <u>not</u> fit into one specific grade

"Traditional" HFOs:

(IFO-180/380)

VHFOs: IFO-500 / 700

Experiences so far

Previous NCA – project

(https://www.kystverket.no/Beredskap/forskning-og-utvikling/diesel--og-hybridoljer/forskningsresultater/)

- 2 case studies:
 - Makassar Highway incident (Sweden)
 - Flinterstar incident (Belgium)

Experiences so far

NCA/SINTEF project to gain knowledge on spills of distillate fuel oils and new generation low sulphur fuel oils, especially in cold climate.

- Laboratory and mesoscale tests at SINTEF laboratory
- Basin tests at NCA test facility
- Testing at 2 °C and 13 °C

Sampled oils

Oil sample	Initial analysis	Extended analysis	Skimmer tests
Marine Gas Oil 1000 ppm S	Χ		
Marine Gas Oil 500 ppm S	Χ	X	X
Gas Oil 10 ppm S	Χ	X	
«Rotterdam diesel»	Χ	(X)	
«Krasnoselsk»	Χ		
Wide Range Gasoil (WRG)	Χ	X	X
Heavy Distillate Marine ECA 50 (HDME 50)	Х	X	X
Ultra Low Sulphur Fuel Oil (ULSFO)	Х	X	X

Physical properties of distillate and hybrid fuel oils

Oil type	Residue	Evaporat ion (vol. %)	Residue (wt. %)	Density (g/ml)	Flash point (°C)	Pour point (°C)	Viscosity (mPa⋅s) 2°C (10 s ⁻¹)	Viscosity (mPa⋅s) 13°C (10 s ⁻	Viscosity (mPa·s) 50°C (*40°C)
HDME 50	Fresh	0	100	0.903	186	12	11002	1005	36
ULSFO	Fresh	0	100	0.872	75	24	13106	4300	11
ULSFU	250°C+	14.6	86	0.878	112	30	77782	33169	-
Rotterdam	Fresh	0	100	0.885	82.5	<-36	43	12	5.4*
Diesel	250°C+	6.1	94	0.887	110.5	-27	56	14	-
MGO	Fresh	0	100	0.852	62.5	<-36	8	3	3.7
500 ppm S	250°C+	30.6	70.8	0.868	110	<-36	20	12	-
GO	Fresh	0	100	0.833	71.5	<-36	5	0	2.1
10 ppm S	250°C+	59.5	41.2	0.846	107.5	-33	10	7	-
WRG	Fresh	0	100	0.886	115.5	-24	179	59	12.6/ 17.4*

Recovery tests at NCA

Brush skimmer in HDME 50 (0 °C)

Recovery tests at NCA

Brush skimmer / adhesion band skimmer in ULSFO (0 °C)

The way forward

- Two very different 0.1 % S fuels
- Need to gather more experience:
 - Better knowledge of the different products available?
 - Field experiences?
 - Further tests and analysis?
- NCA engaged in new projects on the topic:
 - National projects (SINTEF, oil on water trails)
 - Arctic council project
 - Co-funding ITOPF R&D award project
 - European Project IMAROS

Work packages

- Planning
- Meetings & workshops
- Financial management
- Reporting

WP1: Project management

- Overview of frequently encountered new 0,1 % and 0,5% S products
- Sample collection and selection for WP 3 and 4

WP2: Compilation of knowledge

- Chemical composition and physical properties:
- Oil weathering
- Behaviour in the environment
- Oil spill identification
- Modelling

WP3: Chemical characterisation

- Testing of response methods and equipment:
- Mechanical recovery
- Dispersants
- *In situ* burning
- Shoreline clean-up

WP4: Response options

Project background

Silje Berger Project manager Norwegian Coastal Administration

