



### **Modelling VLSFO weathering**

Sébastien Legrand\*, Ludovic Lepers\*, Fanny Chever

\*Royal Belgian Institute of Natural Sciences Marine Forecasting Centre <u>https://www.marineforecasts.be/</u>



Malta, 31/05/2022











# Are the existing parameterizations able to simulate VLSFO weathering?

# Can you trust in oil weathering model forecast for VLSFO?







### Validation/invalidation exercise

### Weathering model vs polludrome data





### A "toy" weathering model

#### Evaporation

Imaros

#### Lyman/Jones (as in Oiltrans)

- Temperature
- •Wind speed
- Slick length
- Molar volume
- •Schmidt number in air
- •Vapor pressure

#### •Brighton (as in ALOHA)

- Stability class
- •Wind speed
- Slick length
- Molar weight (for molecular diffusivity)
- •Vapor pressure

#### •Fingas (as in OSERIT)

•2 empirical constants

#### Emulsification

#### Scory (as in OSERIT) •Wave height •Kem

•C •Maximum water content

#### Mackay

•Wind speed Maximum water content •C

#### Volatilization : Lyman

#### Dissolution : Mackay and Leinonen

#### Solubility

- Molar volume (for diffusion coefficient)
- Windspeed
- Water volume

#### Photooxidation

Half life constant

Biodegradation

•Half life constant



- Temperature Evaporation
- Emulsion

#### GitHub https://github.com/naturalsciences/weathering\_module\_4\_marine\_pollution







## imaros



### Experimental set-up Cedre's polludrome

#### Polludrome geometry

- Sea water volume : 7 m<sup>3</sup>
- Sea water depth : 0,9 m
- Polludrome surface : 7.78 m<sup>2</sup>

#### Controled 'enviromental' conditions

- Wind : 5m/s
- Currents : 0,4m/s
- Waves height : 0,75 m
- Air temp : 15°C
- Sea water temp : 15°C











### Lab characterization of benchmarked oils at 15°C

| At 15°C                                 | IM-5  | IM-14 | IM-15 |
|-----------------------------------------|-------|-------|-------|
| Density [kg/m <sup>3</sup> ]            | 909   | 937   | 951   |
| Viscosity (10s-1) [mPa s]               | 3051  | 17121 | 4305  |
| Viscosity (100s <sup>-1</sup> ) [mPa s] | 582*  | 5347  | 4137  |
| Pour point [°C]                         | 15    | 27*   | Nd    |
| Max water content in lab [%]            | 67-81 | 19-50 | 49-70 |
| Max water content in polludrome [%]     | 86    | 57    | 70    |

\* from SINTEF

Fresh oil







### Lab characterization of the oil composition



**Distillation curve** 

Each pseudo-component is characterized by density, molar mass, molar volume, vapour pressure, boiling point, solubility, photooxidation rate, biodegradation rate,...

#### IMAROS final conference, Malta, 31/05/2022

|                  | Individuals compounds                                          | Composition<br>(% weight) |
|------------------|----------------------------------------------------------------|---------------------------|
| characterization | $C_1$ - $C_4$ (dissolved gas)                                  | 0.03                      |
|                  | C <sub>5</sub> -saturates (n-/iso-/cyclo)                      | 0.00                      |
|                  | C <sub>6</sub> - saturates (n-/iso-/cyclo)                     | 0.00                      |
|                  | C7- saturates (n-/iso-/cyclo)                                  | 0.00                      |
|                  | C <sub>8</sub> - saturates (n-/iso-/cyclo)                     | 0.00                      |
|                  | C <sub>9</sub> - saturates (n-/iso-/cyclo)                     | 0.01                      |
|                  | Benzene                                                        | 0.00                      |
|                  | C <sub>1</sub> -Benzene                                        | 0.00                      |
|                  | C <sub>2</sub> -Benzenes                                       | 0.00                      |
|                  | C <sub>3</sub> -Benzenes                                       | 0.02                      |
|                  | C <sub>4</sub> & C <sub>5</sub> -Benzenes                      | 0.00                      |
|                  | C <sub>10</sub> - saturates (n-/iso-/cyclo)                    | 0.00                      |
|                  | C <sub>11</sub> -C <sub>12</sub> (total saturates + aromatics) | 4.01                      |
|                  | C <sub>13</sub> -C <sub>14</sub> (total saturates + aromatics) | 4.36                      |
|                  | $C_{15}$ - $C_{16}$ (total saturates + aromatics)              | 4.47                      |
|                  | $C_{17}$ - $C_{18}$ (total saturates + aromatics)              | 3.29                      |
|                  | $C_{19}$ - $C_{20}$ (total saturates + aromatics)              | 3.33                      |
|                  | $C_{21}$ - $C_{25}$ (total saturates + aromatics)              | 5.94                      |
| sity, molar      | C <sub>25</sub> + (total)                                      | 71.66                     |
|                  | Naphthalenes 1 (C <sub>0</sub> -C <sub>1</sub> alkylated)      | 0.64                      |
|                  | Naphthalenes 2 (C <sub>2</sub> -C <sub>3</sub> alkylated)      | 0.40                      |
|                  | PAHs 1 (medium solubility)                                     | 0.46                      |
| on rate          | PAHs 2 (low solubility)                                        | 1.38                      |
| on rocco, m      | Phenols (C <sub>0</sub> -C <sub>4</sub> )                      | -                         |
|                  | Operational Directorate Natural Environment                    | the Euro                  |

Operational Directorate Natural Environment OD Nature I OD Natuur I DO Nature



### Model simulation IM-5 at 15°C







IM5 15°C

**IMAROS** final conference, Malta, 31/05/2022

**Operational Directorate Natural Environment** OD Nature | OD Natuur | DO Nature



Co-funded by the European Union



### Model simulation IM-5 at 15°C



**IMAROS** final conference, Malta, 31/05/2022

Operational Directorate Natural Environment OD Nature | OD Natuur | DO Nature

-



Co-funded by the European Union





### Model simulation IM-14 at 15°C



**IMAROS** final conference, Malta, 31/05/2022

**Operational Directorate Natural Environment** OD Nature | OD Natuur | DO Nature

S





### Model simulation IM-15 at 15°C



**IMAROS** final conference, Malta, 31/05/2022

Operational Directorate Natural Environment OD Nature | OD Natuur | DO Nature

S





### Model simulations at 15°C











## Evaporation is slightly underestimated







IM-15





**IMAROS** final conference, Malta, 31/05/2022







Co-funded by the European Union



## Evaporation is slightly underestimated







**IMAROS final conference, Malta, 31/05/2022** 







Co-funded by the European Union

200



$$\frac{dV_{em}}{dt} = \frac{C_{18}}{1 - C_{18}} \frac{H_s}{C_{15}} V_r K_{em}$$

$$V_{water} = \frac{C_{18}}{1 - C_{18}} V_{em}$$

$$V_{tot,em} = V_{em} + V_{water} = \frac{1}{1 - C_{18}} V_{em}$$

$$V_{tot} = V_r + V_{em} + V_{water} = V_r + \frac{1}{1 - C_{18}} V_{em}$$

$$Y = \frac{V_{water}}{V_{tot}}$$

**IMAROS** final conference, Malta, 31/05/2022

 $V_r$ : Volume of remaining oil [m<sup>3</sup>]  $V_{em}$ : Volume of emulsified oil [m<sup>3</sup>]  $V_{water}$ : Volume of water in the slick [m<sup>3</sup>]  $V_{tot,em}$ : Total volume of the emulsion [m<sup>3</sup>]  $V_{tot}$ : Total volume of the slick [m<sup>3</sup>]

Y: water fraction in the slick [%]

 $H_s$ : significant waves height [m]  $C_{15}$ : scaling constant (2000000 m)  $C_{18}$ : Maximum water content [%] (Lab)  $K_{em}$ : kinetic coefficient (0-120) [s<sup>-1</sup>]





Co-funded by the European Union



## *K<sub>em</sub>* can be estimated from water content evolution for the first 20h in polludrome



$$Kem = \left[ t_{1/2} \frac{C_{18}}{1 - C_{18}} \frac{H_s}{C_{15}} \right]^{-1} \frac{IM-5}{K_{em}[s^{-1}]} \frac{IM-5}{15,99} \frac{IM-14}{18,73} \frac{IM-15}{43,59}$$







#### The Scory parametrization provides a good estimate of the water content [Y] uptake in the slick







#### Model can simulate the evolution of the slick **Imaros** density if the fresh oil density is known o $\rho_{C_{25}+} \coloneqq \frac{\rho_{oil,fresh}V_{oil,init} - \sum \rho_i V_{i,init}}{V_{C_{25}+,init}}$ $\rho_{slick} = \frac{\sum \rho_i V_i + \rho_{water} V_{water}}{V_{tot}}$ IM14 IM15 IM5 • Density [kg/m<sup>3</sup>]







Time [h]

IMAROS final conference, Malta, 31/05/2022

## imaros

### If non-emulsified oil viscosity is known, models can estimate viscosity of emulsified oil as a function of the water content

 $v_{oil} = v_{ref} \exp(\frac{C_{emul_1}Y}{1 - C_{emul_2}Y})$ 

(Betancour et al, 2005)







# imaros The viscosity of non emulsified oil depends on temperature and evaporation







### **imaros** Model can make reasonable prediction of the evolution of slick viscosity

$$v_{oil} = v_{ref} \exp\left(C_{temp}\left(\frac{1}{T} - \frac{1}{T_{ref}}\right) + C_{evap}F_{evap} + \frac{C_{emul1}Y}{1 - C_{emul2}Y}\right)$$











Co-funded by the European Union



Take home message

# Are the existing parameterizations able to simulate VLSFO weathering?

Yes, they can

### Should you trust in oil weathering model forecast for VLSFO? Only if an accurate oil characterization is available

# Oil slick spreading should be improved to take into account the 'rheofluidity'

IMAROS final conference, Malta, 31/05/2022





Co-funded by

the European Union





### **Modelling VLSFO weathering**

Sébastien Legrand\*, Ludovic Lepers\*, Fanny Chever

\*Royal Belgian Institute of Natural Sciences Marine Forecasting Centre <u>https://www.marineforecasts.be/</u>



Malta, 31/05/2022