Forum for Framtidas Oljevern 2021

Shoreline Oil Spill Response Viability Analysis

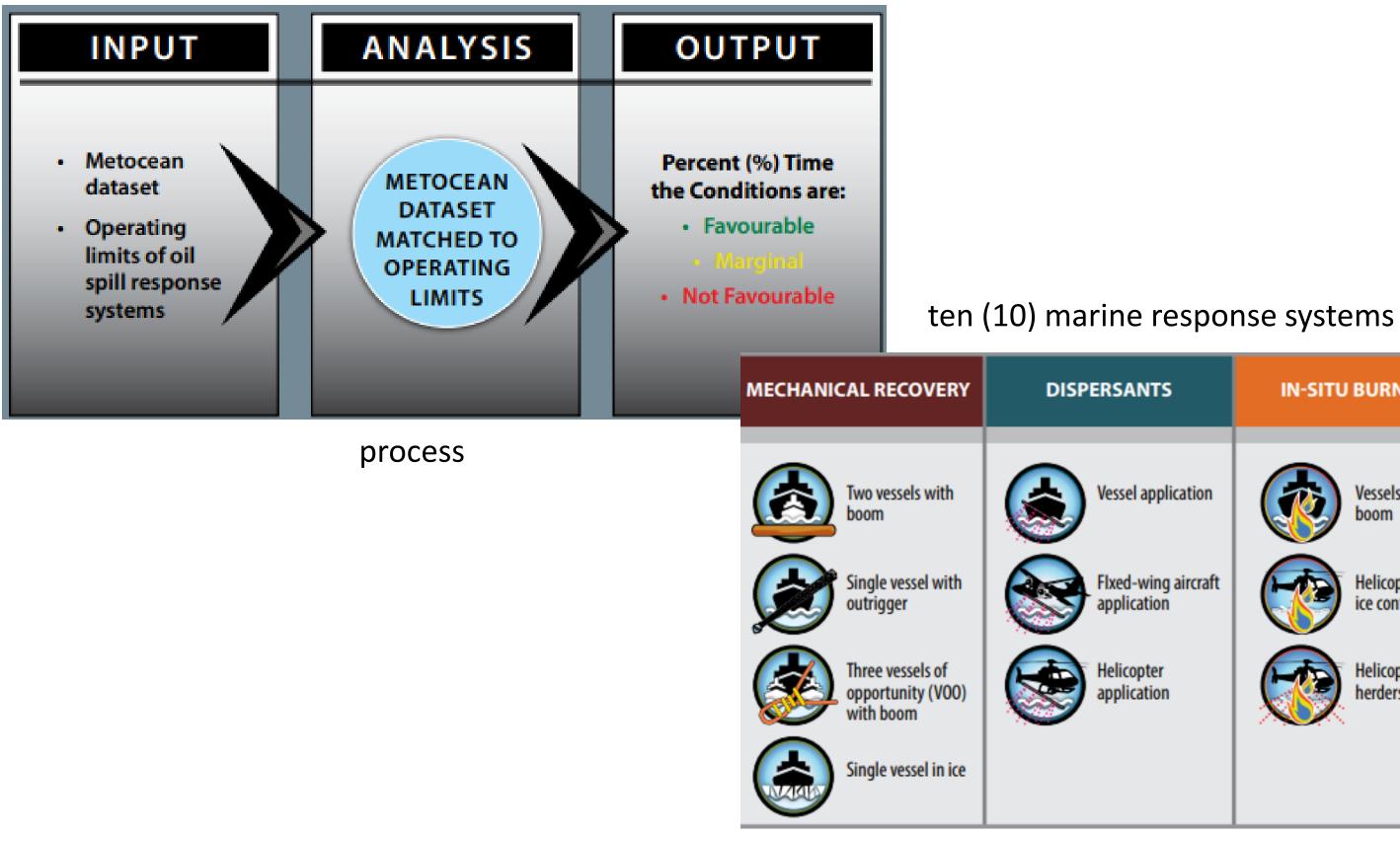
Ed Owens, PhD 14 September 2021

Topics

- EPPR's Circumpolar Oil Spill Response Viability Analysis (COSRVA) ullet
- **COSRVA's Coastal-Nearshore Coverage** ${\color{black}\bullet}$
- Shoreline-COSRVA concept
- Shoreline Treatment \bullet
 - Feasibility Analysis Logic
 - Trade-Offs and Consequences
 - Operational Viability Analysis Logic
- Decision Support Tools and the Complexity of a Shoreline Response
- Next Steps

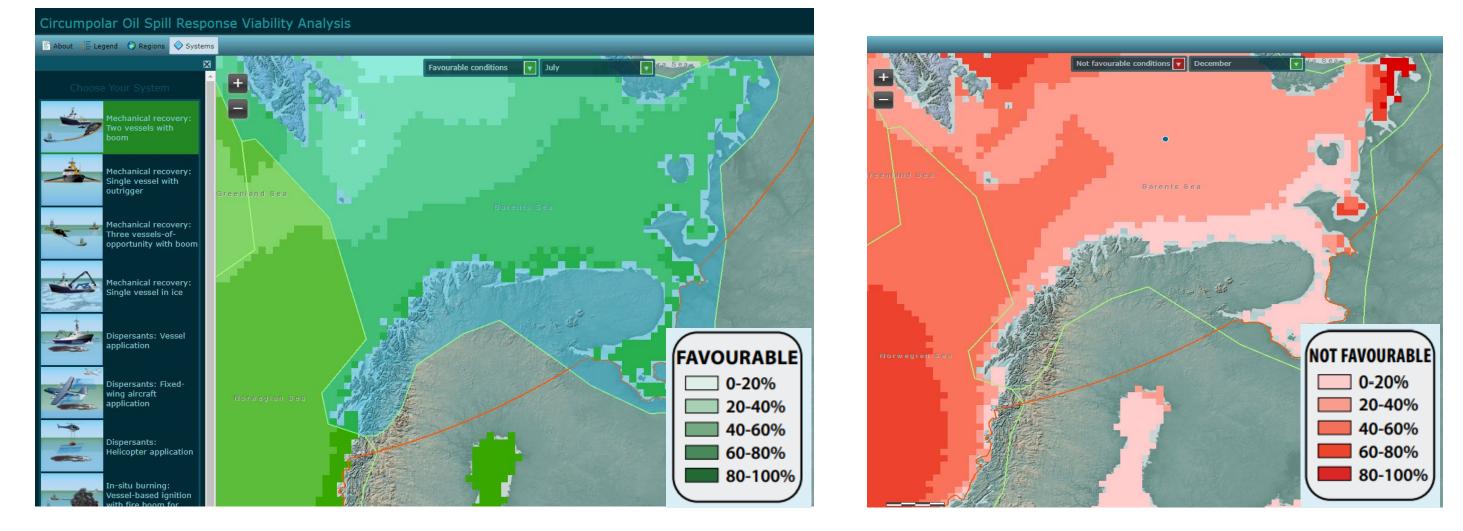
Circumpolar Spill Response Viability Analysis (COSRVA)

- A project of the Arctic Council EPPR cosponsored by Norway, Iceland, the United States and the Nordic **Council of Ministers**
- Analyses the viability of ten (10) marine response systems in terms of the environmental metocean (meteorological-oceanographic) operational limitations on each of system



COSRVA

- An online tool
- A GIS-based web site that provides planners and decision makers with information on whether a marine response option is **Favourable**, Marginal, or Not Favourable in TIME (by month) and SPACE (by 25 km grid cells)

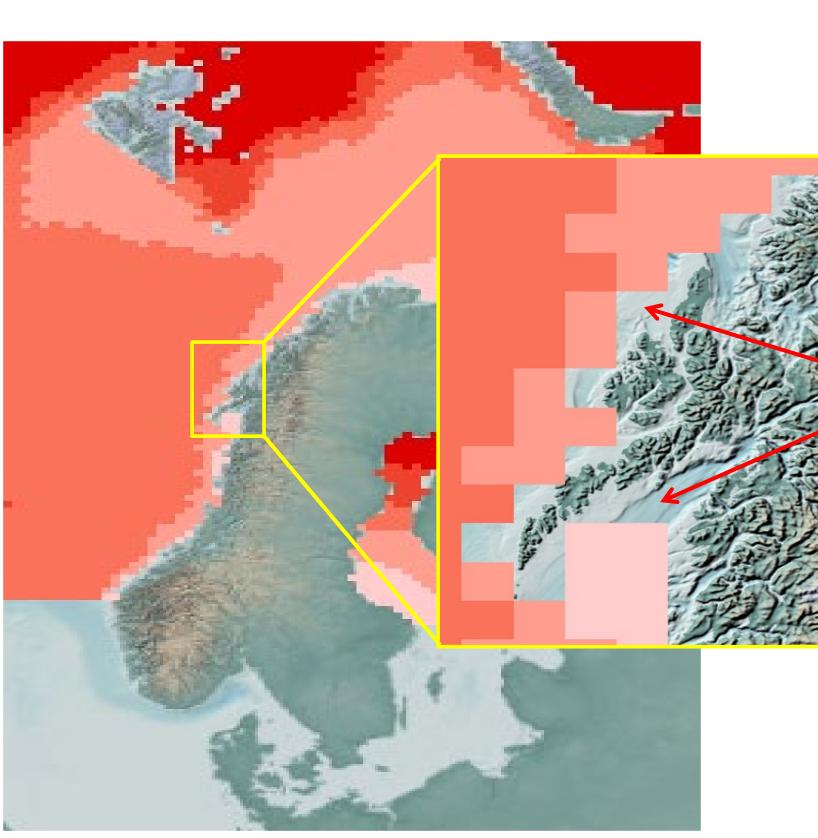


5	IN-SITU BURNING			
lication	Vessels with fire boom			
j aircraft	Helicopter with ice containment			
1	Helicopter with herders			

Barents Sea Mechanical Recovery Two Vessels with Boom

July – Favourable Conditions

December – Not Favourable Conditions



h Boom ourable Conditions

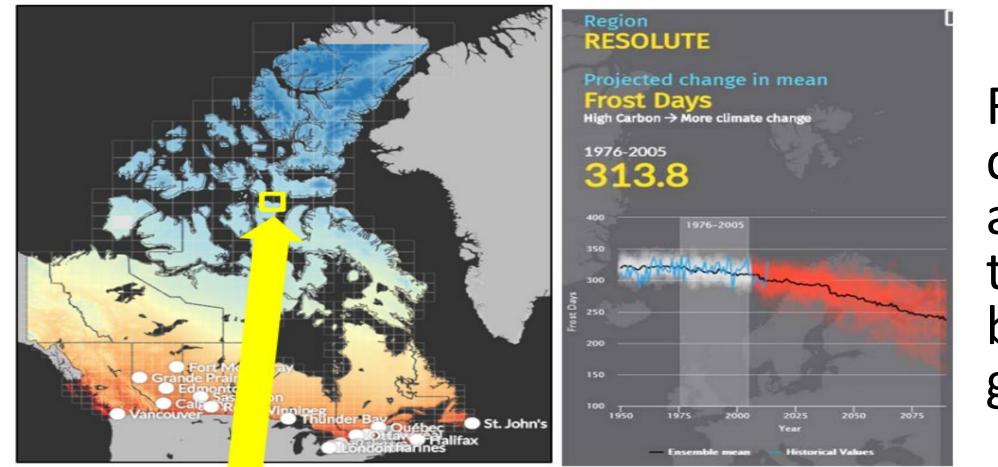
73°0'44"N 39°0'12"E 100 -90 80 70 60 50 40 30 20 10 0 -Feb Mar Apr May Jun Jul Aug Sep Oct Nov Jan Dec Favourable Marginal Not favourable **____** 0.0 20 50 60 90 10 30 40 70 80 100 July Fog 23% Limiting factors for system (%) Visibility (fog) 23 Wave height 2

73°0'44"N 39°0'12"E Feb Mar Jul Aug Sep Nov Dec Apr May Jun Oct Marginal Not favourable 20 30 40 50 60 70 80 90 100 **December – Wave Height 35%** Limiting factors for system (%) Wave height 35 Wind speed 1 Visibility (fog) 1

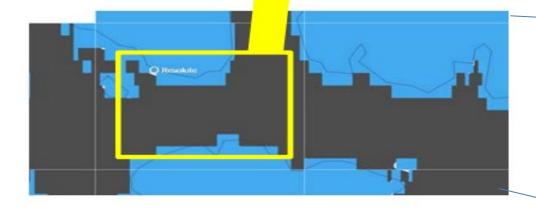
No COSRVA coverage if the center of the cell is <10 km from the shoreline

Add the "S" to COSRVA !

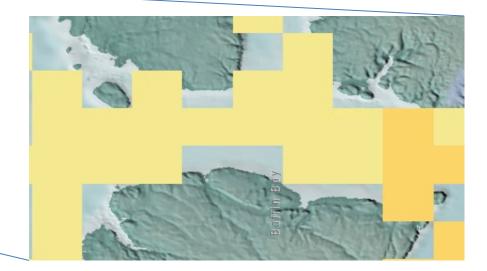
DNV.G


Circumpolar Oil Spill Response Viability Analysis Online Portal

User Guide


https://maps.dnvgl.com/cosrva

Current MPRI Shoreline Studies


- As part of the Canadian Oceans Protection Plan MPRI has funded a (Shoreline) Oil Translocation project that included the development of:
 - Shoreline Decision Support Tool (DST) concept
 - Demonstration DST input and output interfaces
 - Canadian oiled shorelines case studies data base
 - GIS data base for DST shoreline environmental data
 - Lab and meso-scale studies to support the shoreline oil weathering (Natural Translocation) modeling

For the GIS component had already planned to use a grid cell basis with layered graphics

Consistent with the COSRVA cells approach

"Shoreline COSRVA"

• Purpose:

- Add shoreline (onshore) response viability to the existing EPPR (offshore) marine response viability model
- Presentation:
 - Follow the existing COSRVA grid cell presentation format for consistency
- New Data:
 - No new metocean data required as would use existing (a) COSRVA environmental data and (b) the existing EPPR operational viability analysis

Existing COSVRA Metocean Data

Existing COSRVA Data	"SHORELINE COSRVA"
Wind speed (m/s)	$\checkmark\checkmark$
Significant wave height (m)	$\checkmark \checkmark \checkmark$
Average wave period (s)	-
Sea Ice coverage (%)	$\checkmark \checkmark \checkmark$
Air temperature (°C)	\checkmark
Superstructure icing (cm/hr)	\checkmark
Wind chill (w/m ²)	$\checkmark\checkmark$
Daylight/darkness	$\checkmark\checkmark$
Horizontal visibility (m)	$\checkmark\checkmark$
Cloud ceiling (m)	$\checkmark\checkmark$

Relevance

Additional Data for a "Shoreline OSRVA"

S-COSRVA Category	"New" Data Av
Wind direction (on-offshore quadrant)	probably same source
Shore-zone ice (Y/N)	easily derived from
Frost (Y/N)	existing Canada Atl
Tidal Range (m)	can be easily ext
Substrate type (14 categories)	existing ECCC c
Oil Type (5 categories)	existing DST ca
Oil Loading (4 categories)	existing DST ca
Sediment fines availability (1-10 index)	existing - developed f

Availability

- rce as COSRVA
- m Frost data
- tlas data base
- trapolated
- categories
- categories
- ategories
- for MPRI study

Other Features

- Shoreline operational viability analysis already exists as text in the 2017 EPPR Field Guide for Oil Spill Response in Arctic Waters
- Would use the same EPPR substrate type categories (this could vary from country to country depending on national data)
- Can use output from the EPPR Waste Management **Calculator** that was developed for Arctic shorelines
- ✓ 25 x 25 km grid would work well

Field Guide for Oil Spill Response in Arctic Waters (Second Edition, 2017)

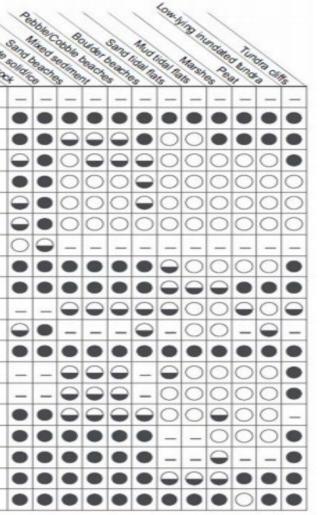

ARCTIC WATERS FIELD GUIDE

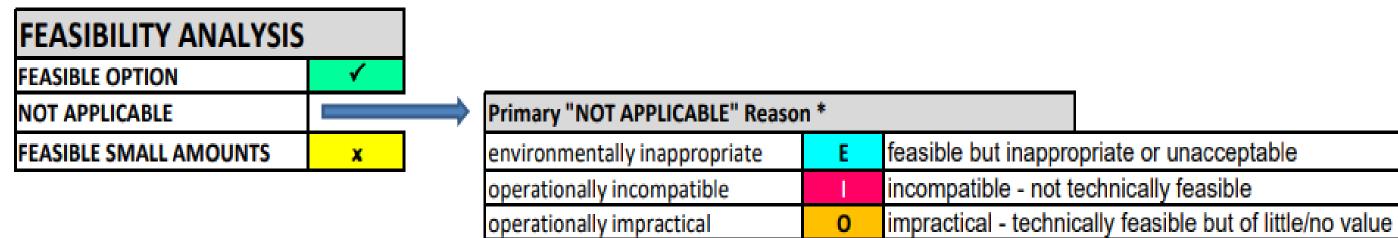
Table 4.1. Treatment Methods for Bedrock Shores

1	Freatment Method	light oil	medium oil	heavy oil	
嶽	natural recovery	0	0		
۵	flooding	0	0		
\$	low-pressure, ambient-water	\bigcirc	0	\bigcirc	
٨	low-pressure, warm/hot-water		0	\bigcirc	
\$	high-pressure, ambient-water			\bigcirc	
6	high-pressure, hot-water			\bigcirc	
ġ	manual removal	\bigcirc	$\overline{}$	\bigcirc	
t	vacuum systems	0	0	\bigcirc	
13	sorbents	\bigcirc	\bigcirc		
17	dispersants		$\overline{}$		
18	shoreline cleaners		$\overline{}$		
⊖ good ⊖ fair (for small amounts of oil only)					

Technique or Device	Resource Requirements	Relative Cleanup Rate	Single or Multiple- Step	Waste Generation	
9 manual removal	labour- intensive	slow	multiple	minimal	
10	labour- intensive	slow	multiple	moderate	
grader/scraper	minimal labour support	very rapid	single/mul tiple	moderate	
11 front-end loader	minimal labour support	rapid	single	high	
11 bulldozer	minimal labour support	rapid	multiple	very high	
11 backhoe	minimal labour support	medium	singl		
11 dragline/clamsh	minimal labour support	medium	singl	Natural recovery	
ell				Flooding	
1	minimal labour support	slow- medium	varie	Low-pressure, amb	ient wash
beach cleaners	labour-	slow	multi	Low-pressure, warm/hot wash High-pressure, ambient wash	
vegetation cutting	intensive			High-pressure, war	
13/	labour-	slow	multi	Steam cleaning	
passive	intensive if used			Sandblasting	
sorbents	extensively			Manual removal	
	with large amounts of oil			Vacuums	
				Mechanical remova	ıl
				Vegetation cutting	
				Passive sorbents	
				Mixing	
Via	ability			Sediment relocation	n
VIC	WIILY			Burning	
				Dispersants	
				Shoreline cleaners	2
				Solidifiers	

nsequences

SHORELINE TREATMENT LOGIC

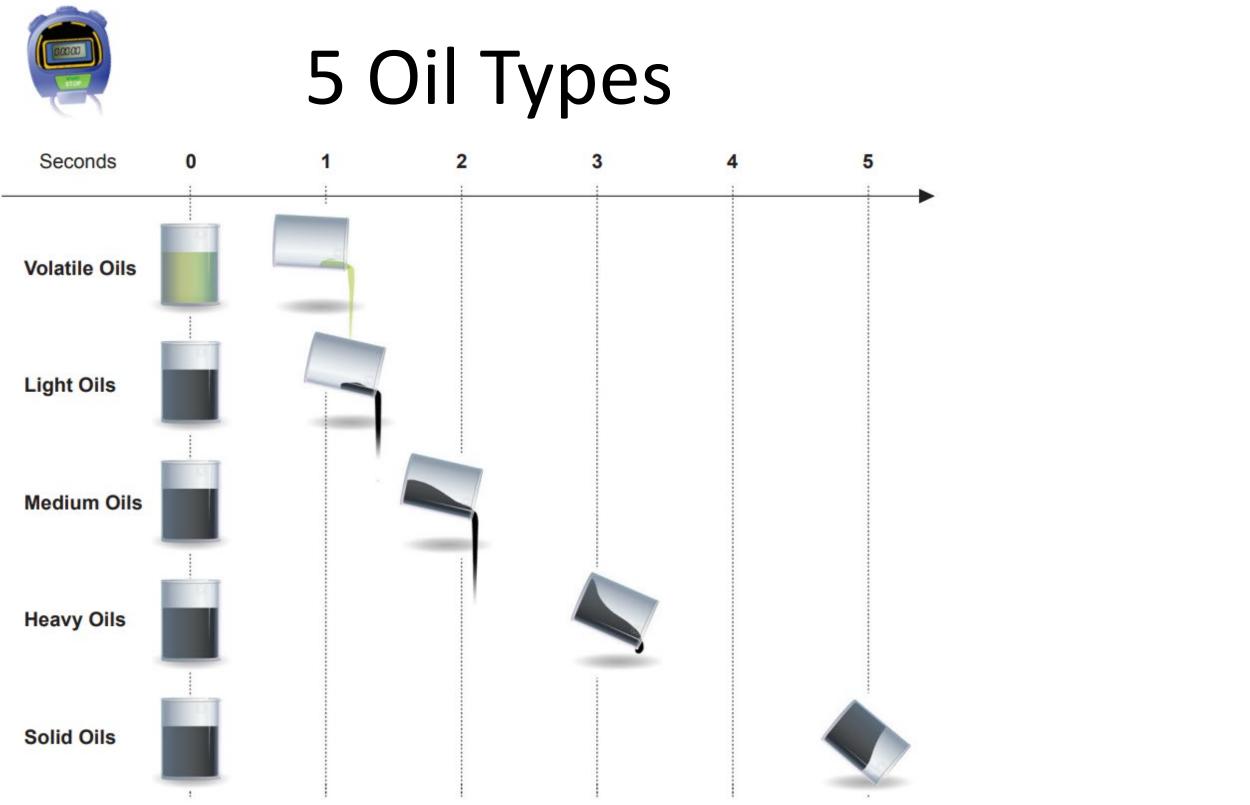

Feasibility Analysis (completed)

- Operationally practical, appropriate, and reasonable, and environmentally acceptable?
- > YES, a technique is an option
 - or **NO**, it is not applicable because impractical, incompatible, inappropriate, or a safety concern
- **Operational Viability Analysis** (text written analysis not yet started)
 - \succ Environmental (metocean) viability of the feasible options?
 - > YES, but only in certain operating conditions
 - or NO, because of environmental or access constraints

SHORELINE TREATMENT LOGIC **1. FEASIBILITY ANALYSIS**

Based on:

- 5 oil types
- 15 shoreline types
- 21 shoreline treatment options


safety

* more than one reason may apply for a given shore type/treatment option

S

everything manual for Volatile oils

Basic Shoreline Types

Impermeable

- Bedrock
- Ice Glaciers
- Man-Made Solid

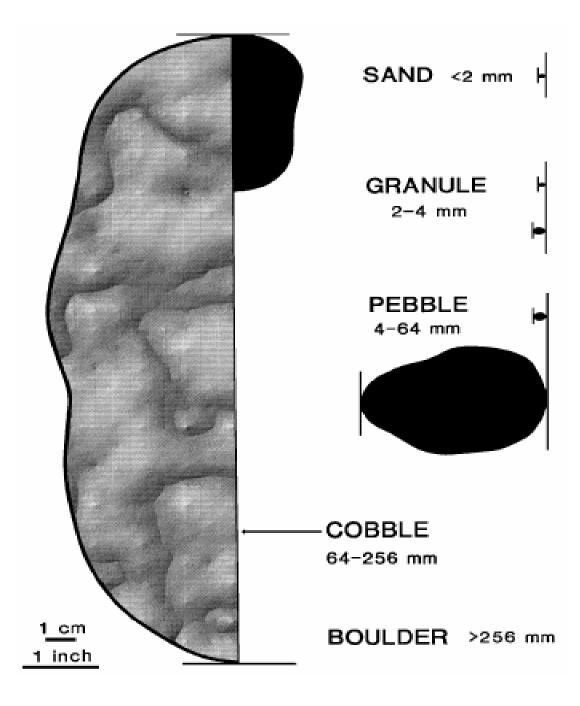
Permeable

- Mud Tidal Flat
- Sand Tidal Flat
- Sand Beach
- Mixed-Sediment Beach
- Mixed-Coarse Sediment Flat
- Pebble-Cobble Beach
- Boulder Beach
- Snow

Permeable Vegetated Shores

• Salt Marshes (grasses)

ARCTIC


IMPERMEABLE

- Tundra Cliffs
 PERMEABLE
- Low-Lying Tundra
- Peat

ores s)

Grain Size (after Wentworth, 1992)

Up to 2 mm = Sand =

Up to 4 mm = Granule =

Up to 64 mm = Pebble =

Up to 256 mm = Cobble =

Shoreline Treatment Options

	STRATEGY	TACTIC(S)
NATURAL RECOVERY		• monitor
	Water Wash and Recover	 flood and/or wash low or high pressure unheated or heated water recover
PHYSICAL	Removal	 manual or mechanical removal, sorbent recovery vacuum recovery
	In Situ Treatment	mixingsediment relocationincineration
BIOLOGICAL Bioremediation		 broadcasting nutrients and mixi
CHEMICAL	Surface Washing Agents (SWA's)	 detergents herders dispersants

er

, cutting, sieving, or

king

Feasibility Analysis Examples - 1

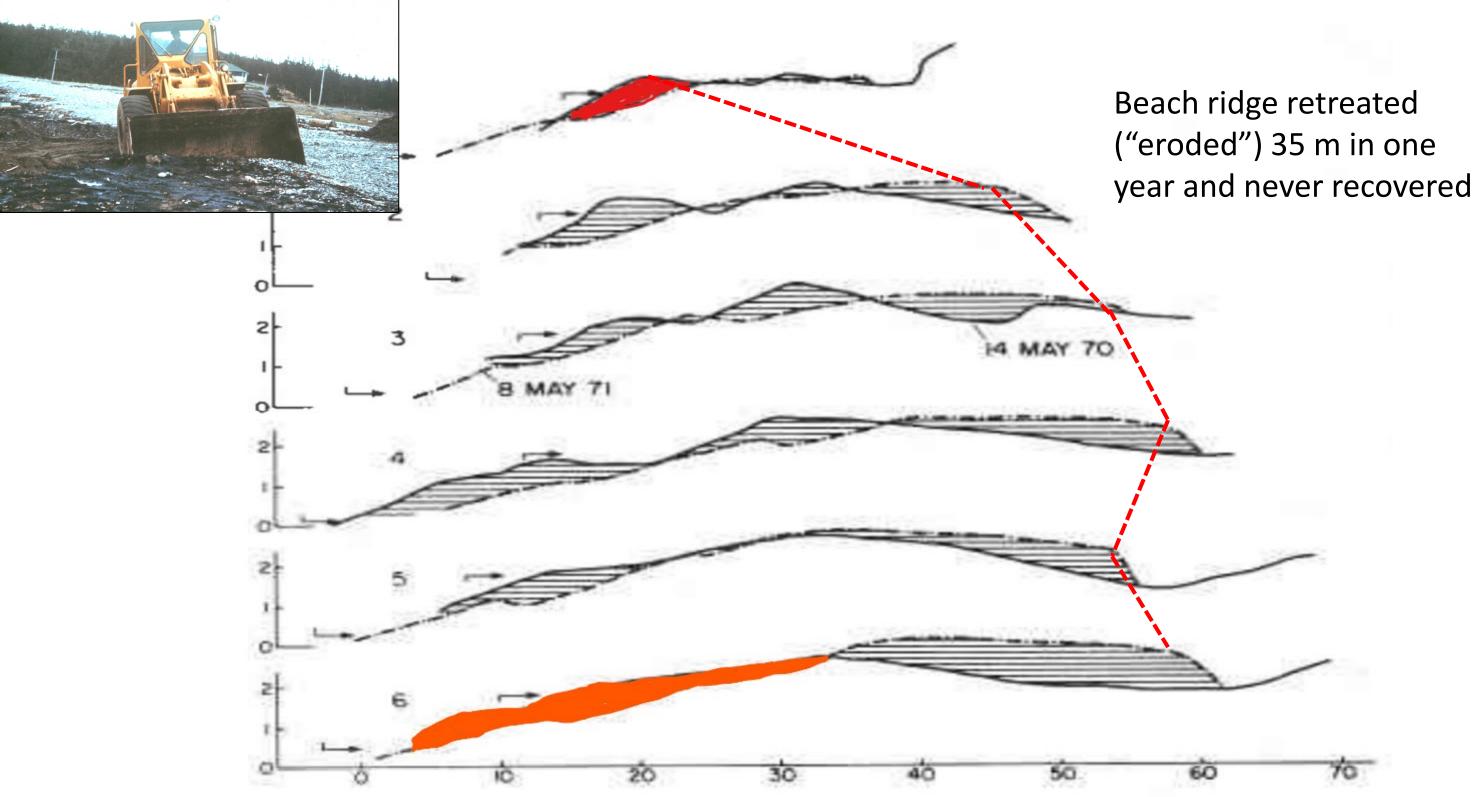
- Earthmoving equipment for removal can be operated on a sand beach (FEASIBLE) but not on a bedrock platform (*OPERATIONALLY INCOMPATIBLE*) – for all oil types
- **Bioremediation** is not logical (*TECHNICALLY FEASIBLE* **BUT OF LITTLE/NO VALUE**) for solid oils but **FEASIBLE** for small amounts of light and medium oils on sediment shorelines

Feasibility Analysis Examples - 2

- *"feasible but environmentally inappropriate or* unacceptable"
 - machinery in a marsh
 - manual removal (walking) on an oiled mud flat
 - high-pressure heated water on intertidal flora/fauna bedrock
 - etc.

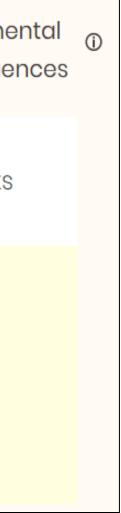
Feasibility Analysis Examples - 3

- *"feasible but environmentally inappropriate or* unacceptable"
 - Many coarse-sediment beaches in Canada and Norway are "relict"
 - They developed from erosion of glacial surficial sediments which are only slowly replace, if at all, if they are removed
 - We documented this in Nova Scotia where sediment was not replaced naturally and resulted in beach erosion


Glacial Till Cliff Materials (%) by Volume

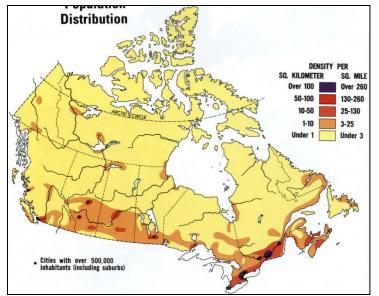
Boulder	Cobble	Pebble	Granule	Sand	Silt/Clay	Wa
6.5	6.2	12.8	3.4	15.9	37.3	17

55% of the material eroded from this high cliff does not stay on the beach so that the replenishment rate is very slow


Trade-Offs and Consequences

If more than one techniques is feasible and acceptable then what are the key factors in the selection of the better option(s)?

- Environment consequences (Net Environmental Benefit)
- Effort involved (manpower, equipment and logistics support)
- Time to completion
- Waste generation(type and volume)

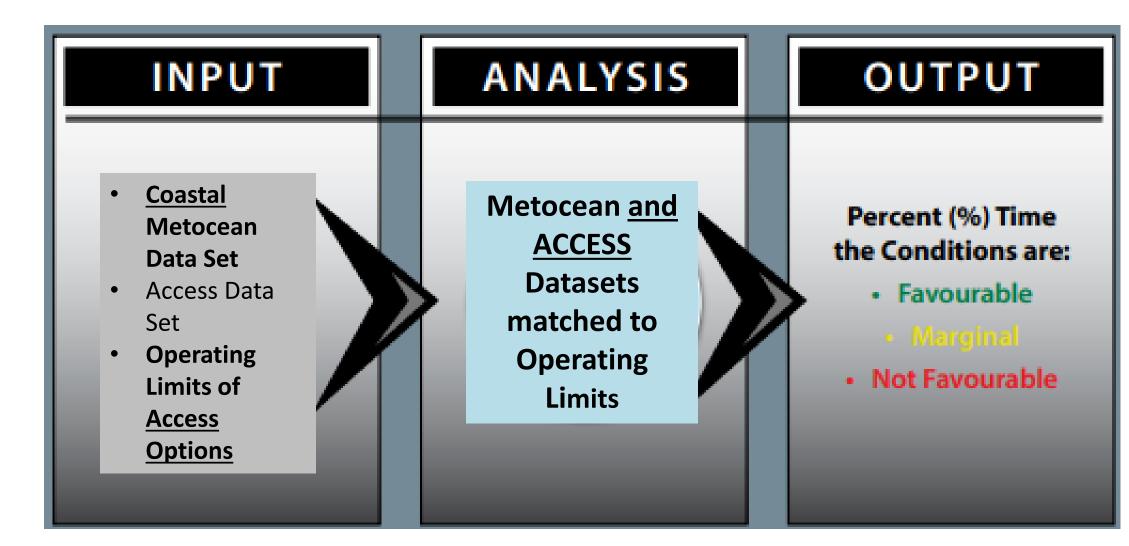

Shoreline Treatment Tradeoff Matrix

TREATMENT / TRADEOFF	↑ Waste ^①	Effort ^①	Time ⁽ⁱ⁾	Environme Conseque
Natural Attenuation	None	Very Low	Very Slow	No effects
O Low Pressure Ambient Wash	High	Very High	Very Slow	Medium
Physical Mechanical Removal	High	Low	Rapid	Medium

SHORELINE TREATMENT LOGIC **2. OPERATIONAL VIABILITY ANALYSIS**

- can use the same environmental (metocean) data already in COSRVA
- But, different from COSRVA:
- need to add ACCESS in order to implement the treatment option(s) - nothing happens without LOGISTICS

Remoteness


- About 99% of the coast of Canada is "remote" in the sense that shoreline operations would require creating temporary onshore or on water staging support.
 - Population density of 4 per km² and 90% lives within 150 km of the US border !!!
- Norway would not be much different! (15 per km²)
- An important element in the Operational Viability Analysis

COSRVA OPERATIONAL VIABILITY ANALYSIS

INPUT	ANALYSIS	OUTP
 Metocean dataset Operating limits of oil spill response systems 	METOCEAN DATASET DATASET	Percent (%) the Condition • Favoura • Margin • Not Favou

) Time ons are: able nal urable

S-COSRVA OPERATIONAL VIABILITY ANALY

SHORELINE TREATMENT LOGIC OPERATIONAL VIABILITY ANALYSIS

- Is the site accessible by land, sea or air
- **?** Is the site trafficable
 - can people move around easily
 - can machinery operate on the oiled areas
- ? Is the site safe and are staging areas available

reas ailable

SHORELINE TREATMENT OPERATIONAL VIABILITY ANALYSIS

1. Marine Access

- Physical and Logistics Viability
- Operating Environment (metocean) Viability

2. Terrestrial Access

- Physical and Logistics Viability
- Operating Environment (shore zone) Viability

3. Aerial Access (VTOL)

- Physical and Logistics Viability
- Operating Environment (metocean) Viability

Marine Access Viability

Physical and Logistics

- Water depth
- Obstacles (reef, rocks)
- Infrastructure (dock/wharf)
- Distance (greater or less than 12 hours one way at 5 knots)

Operating Environment

- Significant wave height (<1m - >1m)
- Average wave period
- Sea ice coverage
- Superstructure icing
- Wind speed
- Daylight/darkness
- Horizontal visibility

Terrestrial Access Viability

Physical and Logistics

- Backshore slope
- Obstacles (cliffs, woody debris)
- Habitation distance
- Infrastructure (roads)

Operating Environment

- Tidal range
- Shore-zone ice
- Wind chill
- Daylight/darkness

Aerial Access (VTOL) Viability

Physical and Logistics

- Terrain (landing site)
- Distance
 - small helo 500 km one way
 - large helo 750 km one way)

Operating Environment

- Wind speed
- Icing
- Daylight/darkness
- Horizontal visibility
- Cloud ceiling

S-COSRVA

- Feasibility is about treatment options that are appropriate, practical and reasonable
- Operational Viability is primarily about the ability to implement those treatment options: access and logistics

Decision Support Tools and the Complexity of a Shoreline Response Shoreline cleanup often is a relatively slow process that takes time to complete –

- usually *weeks or even months*
- As a result the opportunity exists for many agencies or interested parties to become involved and *many meetings and discussions* can take place during that time period
- S-COSRVA helps *reduce the complexity* for planners and decision-makers
- Importantly, offers a way to *explain the practical options* (the "Treatment Logic") in an easily understood visual, non-technical format
- Helps explain to local communities as well as the public/politicians the reasons why a decision has been developed, and which is backed by *solid science*

"S-COSRVA"

- ✓ See a strong potential to add an online "*shoreline response* viability" component to the existing COSRVA concept
- Considerable *overlap*, particularly for the environmental metocean data layers
- Substantial effort *already completed* for the Canadian MPRI **Shoreline Response Decision Support Tool**
- See a direct application for the coasts of *all of the Arctic* as the shore types are the same as those used for the Canadian coast